All Hermitian Hamiltonians have parity

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 361029
(http://iopscience.iop.org/0305-4470/36/4/312)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.89
The article was downloaded on 02/06/2010 at 17:07

Please note that terms and conditions apply.

All Hermitian Hamiltonians have parity

Carl M Bender, Peter N Meisinger and Qinghai Wang

Department of Physics, Washington University, St Louis, MO 63130, USA
Received 20 November 2002
Published 15 January 2003
Online at stacks.iop.org/JPhysA/36/1029

Abstract

It is shown that if a Hamiltonian H is Hermitian, then there always exists an operator \mathcal{P} having the following properties: (i) \mathcal{P} is linear and Hermitian; (ii) \mathcal{P} commutes with H; (iii) $\mathcal{P}^{2}=1$; (iv) the nth eigenstate of H is also an eigenstate of \mathcal{P} with eigenvalue $(-1)^{n}$. Given these properties, it is appropriate to refer to \mathcal{P} as the parity operator and to say that H has parity symmetry, even though \mathcal{P} may not refer to spatial reflection. Thus, if the Hamiltonian has the form $H=p^{2}+V(x)$, where $V(x)$ is real (so that H possesses timereversal symmetry), then it immediately follows that H has $\mathcal{P} \mathcal{T}$ symmetry. This shows that $\mathcal{P} \mathcal{T}$ symmetry is a generalization of Hermiticity: all Hermitian Hamiltonians of the form $H=p^{2}+V(x)$ have $\mathcal{P} \mathcal{T}$ symmetry, but not all $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians of this form are Hermitian.

PACS numbers: 11.30.Er, 03.65.-w, 03.65.Ge, 02.60.Lj

The requirement that a Hamiltonian be Hermitian guarantees that the energy eigenvalues of the Hamiltonian are real. However, in 1998 [1] it was shown that a non-Hermitian Hamiltonian can still have an entirely real spectrum provided that it possesses $\mathcal{P} \mathcal{T}$ symmetry. For example, with properly defined boundary conditions, the Sturm-Liouville differential equation eigenvalue problem associated with the non-Hermitian Hamiltonian

$$
\begin{equation*}
H=p^{2}+x^{2}(\mathrm{i} x)^{v} \quad(v>0) \tag{1}
\end{equation*}
$$

exhibits a spectrum that is real and positive. It was argued in [1] that the reality of the spectrum of H is a consequence of the unbroken $\mathcal{P} \mathcal{T}$ symmetry of H. A complete proof that the spectrum of H is real and positive was given by Dorey et al [2].

In [1] it was stated that $\mathcal{P} \mathcal{T}$ symmetry (space-time reflection symmetry) is a weaker condition than Hermiticity in the following sense. For many different Hermitian Hamiltonians, such as $H=p^{2}+x^{4}, H=p^{2}+x^{6}, H=p^{2}+x^{8}$, and so on, we can construct infinite classes of non-Hermitian $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians $H=p^{2}+x^{4}(\mathrm{i} x)^{\nu}, H=p^{2}+x^{6}(\mathrm{i} x)^{\nu}, H=$ $p^{2}+x^{8}(\mathrm{i} x)^{\nu}$, and so on. So long as the parameter v is real and positive $(\nu>0)$, the $\mathcal{P} \mathcal{T}$ symmetry of each of these Hamiltonians is not spontaneously broken and the spectrum is entirely real [3].

In this paper we show that for Hamiltonians of the form $H=p^{2}+V(x), \mathcal{P} \mathcal{T}$ symmetry is a generalization of Hermiticity and that the set of Hermitian Hamiltonians (for which $V(x)$
is real) is entirely contained within the set of $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians. That is, we will show that if a Hamiltonian of this type is Hermitian, then it possesses both parity symmetry \mathcal{P} and time-reversal symmetry \mathcal{T}.

As an example, consider the Hermitian Hamiltonian

$$
\begin{equation*}
H=p^{2}+x^{4}+x^{3} . \tag{2}
\end{equation*}
$$

It is obvious that this Hamiltonian is symmetric under the operation of time reversal \mathcal{T}, where \mathcal{T} transforms $p \rightarrow-p$ and $x \rightarrow x$. (The operator \mathcal{T} also transforms $\mathrm{i} \rightarrow-\mathrm{i}$, but because the Hamiltonian is real, this fact is not relevant here.) The Hamiltonian H also possesses another discrete symmetry that can be called parity. The purpose of this paper is to show how to construct such an operator for any Hermitian Hamiltonian.

Given a Hamiltonian like that in (2) one may in principle solve the time-independent Schrödinger equation

$$
\begin{equation*}
H \phi_{n}(x)=E_{n} \phi_{n}(x) \tag{3}
\end{equation*}
$$

where the eigenfunctions of H are $\phi_{n}(x)$ and the corresponding eigenvalues are E_{n}. These eigenfunctions form an orthonormal set:

$$
\begin{equation*}
\int \mathrm{d} x \phi_{m}^{*}(x) \phi_{n}(x)=\delta_{m, n} \tag{4}
\end{equation*}
$$

From the theory of Hermitian operators we know that the eigenfunctions form a complete basis:

$$
\begin{equation*}
\delta(x-y)=\sum_{n=0}^{\infty} \phi_{n}(x) \phi_{n}^{*}(y) \tag{5}
\end{equation*}
$$

Because the coordinate-space eigenfunctions are complete we can use them to represent the Hamiltonian as a matrix in coordinate space:

$$
\begin{equation*}
H(x, y)=\sum_{n=0}^{\infty} E_{n} \phi_{n}(x) \phi_{n}^{*}(y) . \tag{6}
\end{equation*}
$$

Let us now follow the approach of [4] to construct a new operator, which we will call $\mathcal{P}(x, y)$:

$$
\begin{equation*}
\mathcal{P}(x, y) \equiv \sum_{n=0}^{\infty}(-1)^{n} \phi_{n}(x) \phi_{n}^{*}(y) \tag{7}
\end{equation*}
$$

Observe that \mathcal{P} has the following four properties: (i) The operator \mathcal{P} is linear and Hermitian. (ii) \mathcal{P} commutes with the Hamiltonian. (iii) $\mathcal{P}^{2}=1$; that is, in coordinate space $\int \mathrm{d} z \mathcal{P}(x, z) \mathcal{P}(z, y)=\delta(x-y)$. (iv) ϕ_{n} is an eigenfunction of \mathcal{P} with eigenvalue $(-1)^{n}$; that is,

$$
\begin{equation*}
\int \mathrm{d} z \mathcal{P}(x, z) \phi_{n}(z)=(-1)^{n} \phi_{n}(x) \tag{8}
\end{equation*}
$$

by virtue of orthonormality.
Based on property (i) the operator \mathcal{P} is an observable, and based on property (ii) this observable is conserved (time-independent). Moreover, because of properties (iii) and (iv) the operator \mathcal{P} exhibits the characteristics of the parity operator even though the Hamiltonian may not be symmetric under space reflection. We remark that if the potential $V(x)$ of the Hamiltonian $H=p^{2}+V(x)$ is invariant under the transformation $x \rightarrow-x$, then the operator $\mathcal{P}(x, y)$ in (7) is just the usual parity operator $\delta(x+y)$. Note that $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians, for which \mathcal{P} is a more general symmetry than space reflection are considered in [5].

We can follow this procedure for constructing many different operators that commute with the Hamiltonian. For example, we can construct a 'triparity' operator $\mathcal{Q}(x, y)$, whose cube is unity:

$$
\begin{equation*}
\mathcal{Q}(x, y)=\sum_{n=0}^{\infty} \omega^{n} \phi_{n}(x) \phi_{n}^{*}(y) \tag{9}
\end{equation*}
$$

where $\omega=\mathrm{e}^{ \pm 2 \mathrm{i} \pi / 3}$, so that $\omega^{3}=1$. However, this operator is not an observable because it is not Hermitian.

We have shown that if a Hamiltonian of the form $H=p^{2}+V(x)$ is Hermitian then it is also $\mathcal{P T}$ symmetric. (The converse is of course not true.) Thus, $\mathcal{P} \mathcal{T}$ symmetry is demonstrated to be a generalization of Hermiticity.

Acknowledgment

This work was supported by the US Department of Energy.

References

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 805243
[2] Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 34 L391
Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 345679
See also Shin K C 2001 J. Math. Phys. 422513
Shin K C 2002 Commun. Math. Phys. 229543
[3] Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 402201
[4] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89270402
See also Mostafazadeh A 2002 arXiv: math-ph/0209018
[5] Bender C M, Berry M V and Mandilara A 2002 J. Phys. A: Math. Gen. 35 L467

